Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 21(8): 1755-1763, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36723268

RESUMO

Suppression of pyruvate dehydrogenase complex (PDHc) is a mechanism for cancer cells to manifest the Warburg effect. However, recent evidence suggests that whether PDHc activity is suppressed or activated depends on the type of cancer. The PDHc E1 subunit (PDH E1) is a thiamine pyrophosphate (TPP)-dependent enzyme, catalysing the first and rate-limiting step of PDHc; thus, there is a need for selective PDH E1 inhibitors. There is, however, inadequate understanding of the structure-activity relationship (SAR) and a lack of inhibitors specific for mammalian PDH E1. Our group have reported TPP analogues as TPP-competitive inhibitors to study the family of TPP-dependent enzymes. Most of these TPP analogues cannot be used to study PDHc in cells because (a) they inhibit all members of the family and (b) they are membrane-impermeable. Here we report derivatives of thiamine/TPP analogues that identify elements distinctive to PDH E1 for selectivity. Based on our SAR findings, we developed a series of furan-based thiamine analogues as potent, selective and membrane-permeable inhibitors of mammalian PDH E1. We envision that our SAR findings and inhibitors will aid work on using chemical inhibition to understand the oncogenic role of PDHc.


Assuntos
Tiamina Pirofosfato , Tiamina , Animais , Tiamina Pirofosfato/metabolismo , Relação Estrutura-Atividade , Piruvato Desidrogenase (Lipoamida)/metabolismo , Difosfatos , Piruvatos , Complexo Piruvato Desidrogenase/metabolismo , Mamíferos/metabolismo
2.
Bioconjug Chem ; 33(8): 1467-1473, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35876696

RESUMO

Methylcyclopropene (Cyoc)-tagged tetra-acetylated monosaccharides, and in particular mannosamine derivatives, are promising tools for medical imaging of cancer using metabolic oligosaccharide engineering and the extremely fast inverse electron-demand Diels-Alder bioorthogonal reaction. However, the in vivo potential of these monosaccharide derivatives has yet to be fully explored due to their low aqueous solubility. To address this issue, we sought to vary the extent of acetylation of Cyoc-tagged monosaccharides and probe its effect on the extent of glycan labeling in various cancer cell lines. We demonstrate that, in the case of AcxManNCyoc, tri- and diacetylated derivatives generated significantly enhanced cell labeling compared to the tetra-acetylated monosaccharide. In contrast, for the more readily soluble azide-tagged sugars, a decrease in acetylation led to decreased glycan labeling. Ac3ManNCyoc gave better labeling than the azido-tagged Ac4ManNAz and has significant potential for in vitro and in vivo imaging of glycosylated cancer biomarkers.


Assuntos
Neoplasias , Coloração e Rotulagem , Acetilação , Monossacarídeos/metabolismo , Neoplasias/diagnóstico por imagem , Polissacarídeos/metabolismo , Coloração e Rotulagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...